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I. INTRODUCTION.

In the past, most detection, estimation, and control problems
were studied in a linear space setting. While the linear space
aporoach leads to simple solutions for linear systems, no effective
synthesis procedures for optimal detection, estimation, and control
have been obtained for large classes of nonlinear systems.

It is only natural to believe that a nonlinear problem is best
studied in some kind of a nonlinear space. Among all possible
nonlinear spaces it is only natural to start with a space which
is locally linear, on which a differential calculus can be used,
and which has a group structure for us to utilize. Such a nonlinear
space does exist in mathematical literature and is called a Lie
group. In fact, it was invented by Sophus Lie to study nonlinear
differential equations. The theory of Lie groups has been well
established and provides us with a large chest of geometric and
algebraic tools.

In addition to the mathematical nicety, the Lie groups are
natural state spaces for many nonlinear problems of practical impor-
tance. Notable examples are the rotation groups, which are the
state spaces for frequency demodulation, gyroscopic analysis, and
satellite attitude estimation and control. Other examples can be
found in power conversion, nuclear reactor control, and compartmental-
model study in bioscience, etc.

Recent years have seen many useful and interesting results on

detection, estimation, and control problems with Lie group structures.




Most of these results are facilitated by the rich geometric and
algebraic structures which are inherent in these problems and are
made clear only in a Lie group setting. The reader is referred to
[1]1-[3], from which most related articles that are not in the
reference list of this chapter can be traced. This chapter is not
intended to be a survey of the development of what is now called the
geometric approach. We will rather restrict our attention mainly

to estimation and detection and some closely related issues.

In contrast to the linear theory, the continuous~time and the
discrete~time systems on Lie groups are very different in nature.
The approaches to their estimation and detection problems are thus
very different and have been developed on the bases of two separate
ideas. The idea for continuous-time systems is that of "rolling
without slipping." The idea for discrete-time systems is the use
of the exponential Fourier densities.

The continuous-time systems on a Lie group that correspond to

ﬂ the linear systems on a linear space are bilinear in form. In

fact, the bilinear systems can be viewed as induced by the linear

systems through "rolling without slipping.'" Furthermore, "rolling
without slipping" can be shown to be an "almost sure'" bijective mapping
between the bilinear systems and the linear systems. It is known

that the local study of a Lie group is entirely equivalent to the "

study of the finite~dimensional linear algebraic structures of the

associated Lie algebra. '"Rolling without slipping" does indeed ]

facilitate similar simplification in studying estimation and detection.




The exponential Fourier densities have been used to derive finite-
dimensional optimal estimation schemes for many discrete-time
systems on compact Lie groups. This is made possible mainly by the
closure property of the exponential Fourier densities of any given
finite order under the operation of taking conditional distributions.
Another reason for using exponential Fourier densities is that any
continuous or bounded-variation probability density on a compact Lie
group can be approximated as closely as desired by such a density.

Most of these ideas can be clearly illustrated o- the unit circle,
the simplest compact Lie group. The circle is also the natural state
space for many estimation and detection problems of practical importance
such as frequency and phase demodulation and single-degree-of-freedom
gyroscopic analysis. Therefore a detailed theory of estimation on the
circle will be presented in the next three sections. No knowledge of
Lie groups is required to understand them. Estimation and detection
on general Lie groups are studied in the last two scctions. The
required definitions and theorems from the Lie theory are briefly
summarized there.

Although the two sections on general Lie groups and the three
sections on the circle can be read independently, an understanding of
the circle case can definitely help understand the problems and the
results on general Lie group. The main references for Sections II-VI
are [4]-(8] respectively. Section V is the only section that contains

some new results.




This chapter is not intended to exhaust all existing results
on estimation and detection problems with Lie group structure.
The interested reader is referred to [9]-[17] for some of these

results beyond this chapter.

II. PROBABILITY ON THE CIRCLE.

There are many fundamental differences between the estimation
and detection problems on Euclidean spaces and those on Lie
groups. In order for some readers to appreciate them, this section
will be addressed to some probabilistic elements on the circle. The
probability distribution function and the characteristic function on
the circle will first be briefly introduced.

One of the main concerns in this chapter is to study how one
uses the knowledge of the probability distribution of a random variable
taking values on a Lie group to determine an estimate of the random
variable that minimizes a certain error criterion. The conventional
least squares technique cannot be used here. Let us take the circle
as an example. The square error of the angles 0° and 359° is (3592)°.
whereas by geometrical intuition they are only 1° apart. In Sub-
section II.3 we will look into this issue on the circle in detail.

The importance of the normal probability densities cannot be
overemphasized for estimation and detection on Euclidian spaces.

Unfortunately, there does not exist an analogous density on the




circle that possesses all the nice properties of the normal density.
In fact, the nice properties of the normal density are almost equally
divided between two contenders for normalcy, the folded normal density
and the circular normal density. It turns out that while the folded
normal density is natural to use for continuous-time estimation, the
circular normal density is more suitable for discrete-time estimation.

They will both be discussed and compared in this section.

II. 1. The Distribution Function.

A point on the unit circle S1 can be represented by either the
angle 06e(-m,7) it makes with a fixed reference point on the circle

or by the 2 x 2 orthogonal matrix

cos 8 sin 6

exp RO = [-sin6 cos 6

Yot s ook
where the matrix R = [ ?1 é] is called the infinitesimal rotation

matrix. The addition of two angles 61 and 92 modulo 2w, denoted as
61 ® 62, corresponds to the multiplication of the two matrices repre-
senting the points.

Let 6 be a random variable taking values on Sl-(-n,w]. The

distribution function F of 6 can be defined on [-m,m 7 by the equation

et o




F (61) = P(-ﬂ<6§pl). This function F is usually extended to
the whole real line by the equation

F (91 + 2n) - F (91) =1, —m<91<w. The function F defined
this way is called the distribution function (d.f.) of 6 on the
circle.

Given two points 91 and 62 on Sl, we denote by arc (61,62)
the set of points from 91 to 92 in the counter-clockwise direction
with 91 excluded and 92 included. It follows that

P (Pe arc (61, 82)) =F (62) - F (61). There is a natural

projection from R1 to S1 defined by x ——> 6 = x mod 2n. Let

]

61 = x1 mod 217 and 62 x2 mod 2m. It can be shown that

P (Be arc (61,62) = (F(xz) - F(xl)) mod 1. We note that
the d.f. F is a right continuous function, but in contrast with d.f.'s
on the real line,

lim F(8) = « , lim F(6) = -o,

g+ B

If the d.f. F is absolutely continuous, it has a probability

density function (p.d.f.) f such that

82
fe #6) d6 = F (62) - F (61). A given function f is the p.d.f.
1
of an absolutely continuous distribution if and only if (i) f (x) >0,

m™
xeR', (11) £(x + 2m) = £(0), (111) /__ £(x) dx = L.




: II. 2. The Characteristic Function.

Another representation of S1 is as the set of complex numbers

of unit length. Any such number can be uniquely written as eie,
6e(-m,m]. If 6 is a random variable taking values on (-m,m], then
z = exp 16 is a random variable taking values on the unit circle in

the complex plane, which will also be denoted Sl.

The characteristic function of 8 (or z) is the function ¥ defined to

integers, t=0, +1,+ 2, ..., by ¥(t) = E exp (it@) = Iﬂ; exp(it 8)dF(8)
where F(8) is the circular d.f. of . Obviously $(0) = 1,¥(0) = 1,
v(-p), ’t(p)ls 1. The expectations, a(t) = E(cost@) = Re¢(t) and

B(t) = E(sint®) = Imy(t), are called the t-th order sine and cosine

@
moments respectively. If % (az(t) + Ez(t)) is convergent, the random
t=1

variable 6 has a density which is defined almost everywhere by

L

£8) = L

= L y(t) exp (-ith)

==

The joint c.f. of two circular random variables 91 and 62 is

defined by y(t,s) = E exp i (t61+ 392) where t and s are integers.

Let the c.f.'s of 6, and 62 be wl(t) and wz(s). Then 61 and 6

1 2
are independent if and only if y(t,s) = wl(t) wz(s). Furthermore,

if the p.d.f.'s of 91 and 92

® ezo i.e.

exist, then their convolution is the

p.d.f. of 01

(2m 12w (£) ¥, (6) exp (-ite).




II. 3. Error Criteria and Optimal Estimates.

The standard distance function on the circle, the distance p
between two points on the circle, is the arc length of the short
path joining them. If we restrict 61 and 82 to take values in the
range (-m,m], we have

p(8,,0,) = min(]0,-0, | ,21r-|61—6 S

The class of error criteria we wish to consider is the class
of symmetric, nondecreasing cost functions--i.e. functions ¢:SI+R
which satisfy

0 < ¢(8) = ¢(-8)

0 <p(8,,0 <p(6,,00 = $(6,) < ¢(8,). (1)

Some examples of cost criteria satisfying (1) are 0(6)é p(6,0),
(1 - cosb), p(e)z, (1 - cose)z. We also wish to consider the special
class of unimodal, mode-symmetric probability density functions--i.e.,
density functions of the form p:Sla[O,w) with a unique maximum at n,
such that

p(n +8) = p(n - @) v .

As the following theorem demonstrates, under these conditions

the mode of the density is the optimal estimate.

Theorem 1l: Given an error function ¢ that satisfies (1) and a uni-

modal, mode-symmetric probability density function p, then the




Qe

estimation error is minimized at the mode, i.e.,
E(¢(6-n)) < E(¢(6-a)) ¥ a

where p has its maximum at n.

Proof: The theorem follows immediately from results on similarly
ordered functions and the rearrangement inequalities. The basic
result for real valued functions defined on Rl is contained in [18]
(thm. 378) and [19, p. 183]. The result for S' is obtained by
making only minor changes in these proofs.

We remark that from the symmetry of the problem, ¢ has its

global maximum at m and p has its global minimum at n + w. Thus
E(¢(6-n+m)) > E(¢(6-2)) ¥ a, [

It should be noted that Theorem 1 is the S1 analog of a
result of [20], [21]. Note that the same result is true if no
probability density exists but the probability measure is
unimodal at, and symmetric about, some point n, i.e., the d.f. F is
convex for (-m,0] and if F(6) = 1-F(-6) at each continuity point
of F.

Let us now restrict our attention to the error function,
$(6) = 1l-cos 6. This function was used widely in statistics [4]
and was used in [13] to design a phase-tracking system. It is
especially interesting, because locally it is a quadratic function,
i.e. l-cose==1/262 for 6<<l. Let 5 denote the optimal estimate of

the random variable 6 on S1 with respect to the error criterion




-10-
E(l-cos(6-8)). As
78,8 = E(l-cos(8-8))= 1-[E cos®, E 8in@ Y cos®, sini]T,
the optimal estimate 8 is determined by

~

cos 6 =1 E cos 6,
P

sin 6 =1 E sin 6, :
o

with
p= [(Ecos 6)2 + (Esin 0)2]%.

We note that the complex number Y(1) defined in Subsection II.2
can be expressed as p exp i6. This number is called the resultant
of 6. In analogy to the linear space case, the optimal estimate 6

is called the circular mean of 6, and the estimation error n = 1-p

is called the circular variance.

II. 4, Folded Normal Densities. ]

Given a random variable x on Rl with d.f. Fx’ the random

variable 6 = x mod 27 on the circle has the d.f. F defined by

F(8) = T (Fx(e+2“k)-Fx(2wk—n)), 8e(-m,w].

k==x

This can be viewed as obtained from wrapping Fx around the
circumference of the unit circle. If x has a p.d.f, px(x),

the corresponding p.d.f, of 0 1is




=11

p(e) = I px(0+2kn).

k=—c

Corresponding to a normal density Py the folded normal density

F(&;n,Y) = 1 pooaxp [=1 (6-n+2kw)2] (2a)
JZﬂY k=-w 2y

plays a central role in the continuous-time estimation problem
considered in Section IV. The Fourier series representation of
the folded normal density is

o

F(83n,y) =1 +1 I exp (-k’y) cos k(e-n). (2b)
2n m k=1 2

From this representation it is easy to see that the convolution of
two folded normal densities, F(e;nl.yl) and F(e‘“z’Yz)’ is the folded
normal density F(e;n1 € Nys Yy +Yz ). More important properties of

the folded normal density will be studied in the following [6].

Theorem 2: The folded normal density, (2a) and (2b), is unimodal

with mode at 6 = n and is symmetric about n.

Proof: Since cos < 1, the second form of F in (2b) yields

o -nzy/Z
+ 1 I e = F(njn,Y).
™ n=1

F(o3n,y) <1
2m
Thus F has its global maximum at 6 = n.

Since F(8,n,y) = F(6-n;0,Y), we need only show that F(08;0,Y)
is symmetric about 0 and monotone decreasing as p(6,0) increases.
Symmetry is obvious (cos né = cos n(~8)), and monotonicity will follow

if we can show

9F (8;0,y) < O 8e(0,m) (3a)
36
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3F (8;0,y) >0 8e(-m,0) (3b)
36

We now remark that the properties of F(6;0,y) have been studied

extensively, since it is a theta function. See [22] and [23] for

discussions of some properties of theta functions. Using the notation

of [22, pp. 2, 42], we have ©
2n-1 4n-2
F(6;0,Y) =1 8, ( 8+m, 1iy) = k (1 + 2q cos 6+ q ), (4)

2m 2 2w

n=1

where ¢ = e'Y/Z and
: - 2n
k=1 n (1-¢°7).
2w
n=1

Using the fact that F>0 and the form of F given by (4) we have

oo

F-](G;O,Y)"S%(O;O,Y) = -[ z 2%2“;1 — ] sin 6. (5)
n- n-

n=1 (1 + 2q cos 6 + q )

It is easily seen that the term in square brackets on the right hand
side of (5) is positive for all values of 8 and thus (3) is correct.
Some work along these lines has been done in [53]. See (23] for
discussions of other relevant properties of theta functions, hyper-
geometric functions, Legendre polynomials, and Tchebycheff polynomials.
Note that the symmetry requirements of Theorem 1 are necessary.
For instance, if ¢ is not symmetric, the mode of the density need not
be the optimal estimate even if all the other assumptions of Theorem 1

do hold. As an example, consider the function ¢ @ S1 + R

e




$(6) =

Suppose our distribution is the folded normal centered at 0. Then

it can be shown that the mode, 0, is not the optimal estimate.

Theorem 3. Let ¢ satisfy the second requirement of (1) and let
p(8) = F(O;n,Y). Then E( &(9-‘n» is an increasing function of the
variance, y -- that is

d_ E(4(6-n)) > 0. (6)
dy
Proof: Writing

= +
$(6) do + . E : c sin nb dn cos nb)

and using the results on Fourier series analysis,

® 2
E(¢(6-n)) = do e dn e Y/2 s €))

n=1

but we get the same error if we compute E(Y(8-n)), where ¢ is
the symmetrized function
v(e) = [4ce) + d(-9)1/2.
which also satisfies (1). Thus, it is enough to prove the theorem for *

satisfying (1). In this case 1 is the optimal estimate and
E(¢(8=n)) = S$(8-n)F(8,n,Y)de

= I 0(®)F(8;0,7)de

™
=2 fo¢(6)F(0;0,y)d6.




oy -

Then, (6) will hold if

To ¢e) 2_F(e50,v) a8 >0
oY

Suppose we can show that there exists eoelo,n] such that

v FO:0,1) <0 0(0,0)
=2 B8Oy G ;
2y " ghteY
3—3; F(830,Y) > O 8e(8,,7].
Then, since
$(8) < ¢(eo) ee[o,eoj
¢(9) et ¢(eo) 65[90’"],

we have

To o(0)5% F(050,1248 > 9(o,) a ¥, res0,mae

= ¢(eo) d (1/2) = o0,
dy

and we get a strict inequality if ¢ 1s not a constant.

Now it is easy to see that

2
p)
3y F(830,y) =1/2 3 F(8;0,v)

2
26
and the theorem will be proved once we prove the following lemma, which

yields more information about the shape of the folded normal density.
Lemma 1: For an arbitrary but fixed value of y > 0, there exists

eoe[O,n] such that

!
!
i
i
i




=}5=

2

3~ F(8;0,v) <O 6e[0,6,)
392

3% F(8y:0,7) = 0

agz

3" F(630,Y) >0 Be(eo,ﬂ]
262

That is, F has a unique inflection point (at 60) on [O,7].

Proof: We use the form of F(8;0,Y) given in equation (4). We
compute

2
yii

> -A cos 6+ B sin2 e

F

B 5 2q2n—1

2n-1 o q4n-2)

(1+2q

4q2(n+m-l)

n#m (1+2q2n-1cos &5 q4n-2)(1+2q2m—2cos 0 + qéer)

and then a simple computation yields

a2
foi. F(0;0,y) < O
36
a2
—5 F(6;0,Y) > 0 ¥o e[m,m]
30 2
and
_?__ (F-lazF/302> (63;0,y) >0 ¥ 6e(0,m ).
2
36
' These inequalities imply that, there is a unique Qoe(O;g ) such that
a2
—, F(8,;0,v) = 0 and that F(6;0,y)>0 for &> % -
20 2 0

——




.
2 2
9 F(8,;0
-, Ty 2 F(830,1)
96 > 36 A
Wi e F(8g70,Y)
2
or ) F(el;O,y) >0
392

and the lemma and the theorem are proved.

Note that by symmetry we have that F has a unique inflection point
at —60 on the interval [-m,0].

Theorem 3 tells us that the intuitive notion that we '"have more
accurate information" for smaller values of y can be made precise.
Also, this theorem implies another result, which is the S1 analog of a
problem treated in [24]. The problem treated in [24] is that of
finding the optimal linear filter minimizing an asymmetric error criterion
on Rl that decreases on (-»,0] and increases on [0,~). The result is
that the optimal linear filter is the minimum variance filter, and the
proof essentially consists of showing that the expected error cost is an
increasing function of the variance. Theorem 3 clearly implies an S1
analog of this result.

Some examples of cost criteria satisfying (1) and the associated

optimal costs when the density is folded-normal are given in the following

theorem, of which the proof is simple and is therefore omitted.

Theorem 4. Let p(8) = F(8;n,y). Then

(1) E(1-cos(8-n)) = 1-exp(-1)

(11)  E(l-cos(8-n))* = ‘21-2 exp (-3) + % exp (-2y)
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(A10)  E@-n) = F-4 3 o2 exp(- 3Dy
m k=0
® k+1
av) B = 2?4 [t e (adp )
3 k=1 Z

II. 5. Circular Normal Densities.

The multistage estimation for discrete-time systems on Sl
involves two operations alternately that are convolution and conditioning
(i.e. taking conditional distribution). While the class of folded normal
densities is closed under convolution, unfortunately it is not closed
under conditioning. The difficulty involved in using folded normal
densities for discrete-time estimation was discussed in [67] and [25]./

The difficulty is partially resolved [5] if anothér class of
"normal" densities on Sl, is used. These densities are called

circular normal densities and have the form

G(B;3n,y) = 1 exp Y cos (6-n),
21, (Y)

where T (y) is the modified Bessel function of the first kind and order
zero, i.e.,

@

L = e ani,

The circular normal density was first introduced by Langevin [26] in 1905 and

by Von Mises [27] in 1918 in the context of statistical mechanics. In

R ———-
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contrast to the folded normal densities, the class of circular normal
densities is closed under conditioning rather than under convolution [5],
More will be said about this in the next section after the circular
normal density is generalized to the exponential Fourier density.

The class of normal densities on an Euclidean space has the
closure properties under both convolution and conditioning, which accounts
for the success of the Kalman-Bucy filtering for the discrete-time
systems, Now the folded and the circular normal densities divide these
two properties between them. Which one then, is more '"normal" than the
other? We recall that the linear normal density has two characterizations
-- the maximum likelihood characterization and the maximum entropy char-
acterization. It was observed by Von Mises [27] and Mardia [4] respec-
tively that the circular normal density has both characterizations on
the circle. However, the Brownian motion on the circle, induced by that

on the real line through "roll.ing without slipping" (See Section IV),
and a variant form of the central limit theorem on the circle (See [4])
both lead to the folded normal density. Further, the independence of
p(el) and p(ez) and p(el)-p(ez), where p is an arbitrary function and
91 and 82 are independent, also leads to the folded normal density (See
[4]). Therefore, there may be no answer to the above question, Before
we start the next section, let us have a few words about the shape of
the circular normal density.
The circular normal density G(83;n,y) is obviously unimodal and

symmetric about the mode n. The ratio of the density at the mode to

that at the antimode n + m is given by exp 2y so that the larger the




e
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value of Yy, the greater is the clustering around the mode. It can be
shown by straight forward calculation that the function G(6;0,y) has

two inflection points,at + arc cos [- Y2 + (1 + Y2/4)1/2] .

III. DISCRETE-TIME ESTIMATION ON THE CIRCLE.

Estimation for discrete-time systems on the circle was studied
in [6] and [25], using both folded normal densities and Fourier series
representations of probability densities. The optimal estimation
equations obtained therein are infinite-dimensional and cumbersome.
Although some numerical simulation has been done on the suboptimal
equations obtained through truncating the higher order terms, it is not
clear whether these equations have satisfactory performance in general.

As a matter of fact, the "dimension" of the optimal estimation
equations derived from using the folded normal densities increases very
rapidly in time. When Fourier series are used to represent proba-
bility densities, the application of Bayes' rule, which involves the
multiplication of two a priori densities, has the effect of spreading
the dominant Fourier coefficients into the higher order terms. Obviously,
this dilemma becomes compounded in a multistage estimation problem when
a sequence of multiplications of Fourier series takes place.

In this section, we will present an alternative approach. The
approach is based on a new class of probability density functions which
have the form

n

exp| I (ak cos k x tb
k=0

Such a density will be called an exponential density of order n, to be

X sin kx)|.

denoted by EFD(n). We note that the circular normal density introduced
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in the previous section is exactly the EFD(1).

III. 1. Exponential Fourier Densities on the Circle.

There are two reasons for using the exponential Fourier densities.
It is obvious that the multiplication of two EFD(n)'s does not raise
the order of the densities. Thus the class of n-th order exponential
Fourier densities is closed under the operation of taking conditional
distributions.

Another reason for using EFD's is that any continuous or bounded
variation function can be approximated by an EFD as closely as desired
with respect to the square integral norm. This property enables us to
use an EFD(n) as a mathematical model of any probability distribution
on the circle. Both this and the aforementioned closure properties can
be generalized to compact Lie groups and some homogeneous spaces, as will

be seen in Section V. e ids o
Before we illustrate how the EFD's are used to deduce finite-
dimensional, closed-form, and recursive equations to update the condi-
tional densities of the signal given the observation, we will now state

the approximation property in the following theorsm of which a general

version for compact Lie groups will be proven in Section V.

Theorem. Let p be a continuous probability density on Sl. For any

given positive number €, there exists an exponential Fourier density,
n

p.(x) =exp [ (a,cos kx + b, sin bx), such that
n k=0 k k

{:(P(x) = Pn(X))2 dx < e,




ITII. 2. A Basic System on Sl.

Assume that the signal and the measurement processes are governed
by the equations

= & w
Sp n

where{wn} is a given deterministic process on Sl, and {vn} is a white

random process on Sl. The probability densities of s, and ¥ are assumed

1
to be the following independent exponential Fourier densities:
N
p(so) = exp I (aok cos ks] + bok sin kso)
k=0
N
p(vn) = exp k;Zo(unk cos kvn + Bnk sin kvn).

By Bayes' rule,
p(s_ o™ = c pm . |s  pGs . b ®)
n+l n+l nt+l' n+l n+l
n
with C 41 " 1/p(mn+l|m ) = a normalizing constant, It can be

easily shown that the conditional densities on the right can be written

as the following exponential Fourier densities:

p(snlmn) = exp k§0 (ank cos ksn + bnk sin ksn) (9)
5 N
p(sn+1,mn) = exp kEO (ank cos k(sn+1 - wn) + bnk sin k(sn+1 - wn))
N
Py [8hey) = P kfo (0,07,3°08 O = Siy?
+8

n+l,k AR k(mn+1 2 sn+1))’
where &k and bnk are to be determined. Substituting these two

equations into (3),

(10)
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n+l N
p(sn+1|m ) = C 41 OXP z [(ank cos kwn
k=0
- i +
bnk sin kwn an+l,k cos kmn+1
+ 1
Bn+l,k sin kmn+l) cos ksn+1 + (ank sin kwn
o i
bnk cos kwn + an+1,k sin kmn+1
—Bn+l,k cos kmn+1) sin ksn+1].
Thus, we obtain the following recursive formulas for a K and bnk which,
in turn, give us the desired conditional densities p(sn|mn):
an+1,k = ank cos kwn - bnk sin kwn
+ a
i ™
= i +
bn+l,k a K sin kwn bnk cos kwn
+ a si =
N
n+l
p(s m = exp I +
n+1| ) P 2 (an+l,k cos ksn+l bn-!-l,k sin kmn_._ )
for k=1, 2, ..., and where a is a normalizing constant.

n+1,0

P
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III. 3. A Phase-Shift-Keyed System,

Consider the signal and the measurement processes governed by
the equations
s

=s ®w
n+l n n

m =cos (Wt +s ) +v
n n n n

where {wn} is a given deterministic process on S1 and {vn} is a white
Gaussian sequence with zero mean and variances cnz. The probability
density of $) is assumed to be the exponential Fourier density

N

= + 5 .
p(sl) exp kio (a1k cos ksl blk sin ksl)

We note that the measurement process {mn) can be viewed as a
sampled sinusoidal wave modulated by a random phase process {s“} and
corrupted by additive white Gaussian noise {vn}. The special case
of this model where p(sl) is a first-order exponential Fourier density
has been solved in [13]. Here again, by Bayes' rule and straightforward

calculation, we have(8-10).As v is a Gaussian random variable, it

n+l
follows that: g
m - cos(wt +s_..))
p(mn+llsn+1) = 7=_1- A [_ ( mt 1 (2 1 nt1 ]
(11)

Substituting (11) and (10) into (8) yields
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(s |mn+1) = o+l 2 [ a, cos k(s -w)
PiSh+1 T ©XP nk - .
n+l k=0
+ bnk sin k(sn+1 - gn)
- il (m2 - 2m cos (wt + s )
'-—2—“— n+l n+l n+l n+l
20

nt+l y S

2
+ cos” (wt + Sn+1)) ]

n+l
= cn+1 ( N o
,§§==Ei;;“ exp kfo [(ank cos W~ bnk sin kwn) cos ksn+1
+ (ank sin kwn + bnk cos kwn) sin ksn+1
+ mn+l ¢
02 cos wt .. cos 5041
n+l

n+1 : it
2 sin wtn+1 sin sn+1 1 cos 2wt

3 3 n+l
el 4o n+l
L] 2
cos 23n+1 + 2l sin Zwtn+1 sin 28n+1 -m o+l _%}.
4o o+l 202

nt+l
Thus we obtain the following recursive formulas for ank and bnk which,
in turn, give us the desired conditional densities p(sJ mn):

m
= a s w - sin w_+ +
an+l,1 * G bnl n v ; 1l cos wcn+1’

b n+l

m
bn+1,1 a1 sin v+ bnl cos w 2+1 sin wtn+1,

(o]

n+l
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an+1,2 = anz cos 2wn2- bnzsin 2wn - ;. cos 2wtn+1’
ho n+l
= +
bn+l,2 an2 sin 2wn bn2 cos 2w“ + 12 sin Zwtn+1;
4o n+l

and, for k = 3,4,..., recursively ¢

an+1,k = ank cos kwn - bnk sin kwn’

bn+1,k = ank sin kwn + bnk cos kwn’

N
ntl

p(sn+1|m ) = exp kzo[a“+1’k cos ksn+l + bn+1,k sin ksn+1],

Wiesn an+1,0 is a normalizing constant.
ITI. 4. Periodic Measurements in Additive White Gaussian Noise
Consider the signal and measurement processes
051 =5 ® v
= qr

m h(sn) .8
where {wn} and{vn} are as in the previous section and where h.is a periodic |
function with a period of 2w, |

|

The periodicity of h allows us to approximate it by a finite |
Fourier series, as closely as we wish 1in the space of square-integrable
functions. In other words, for any e>0, there exist {fk},{gk}, and a
positive integer M such that




1
!
(
1
i

26—
|In - ]l <
where
M
hM(s): = I (fk cos ks + 8, sin ks). (12)
k=0

Without loss of generality, we may assume that N > 2M in (12),

for otherwise we can set = b1k = 0, for N < k < 2M, and write
2

o M
p(sl) = exp Zk=0 (alkcos ksl + blk sin ksl). We can also assume that

f. = 0, for otherwise £

0 can be incorporated into m. Assume that

0

I = N + ]
p(sn|m ) exp 2k=0 (ank cos ksn bnk sin ksn). By Bayes' rule and

straightforward calculation, we obtain

n+l, _ n
Bl |H5) = o P e, Toe, ) -
M 2
(o
= +1 ex [ = 1 (m
n P —5— Tl - 1 (f, cos ks . +g, sin kan+1))
™ %41 20 k=0
n+l
s Y+ b . sin k(s_,,- w))].
+ T (a, cos k(s ., =V )+ Dy 8 o+l n
k=0
(13)

We note that the function in the above bracket can be written as a finite
Fourier series of order N in the variable Snt1’ This shows by induction
that for all n = 1,2,..., p(sn|mn) is an exponential Fourier density of

can be straightforwardly

order N; the recursive formulas for a_ and bn

k 3

obtained from (13). However, the formulas are tedious and will

not be displayed here.
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IV. CONTINUOUS-TIME ESTIMATION ON THE CIRCLE.

A signal process and an observation process, taking values on Sl,
will be formulated in terms of bilinear Ito matrix differential equations.
The conditional probability distribution of the signal, given observations
over a certain period of time, will be evaluated. Recursive computational
schemes for optimal estimation (filtering, smoothing, and prediction),
with respect to the error criteria defined in Subsection II, 3, will be
derived, In fact it will be shown that optimal estimates on Sl can be
obtained recursively by the use of an ordinary vector space estimator
together with a nonlinear preprocessor and a nonlinear postprocessor.
Multichannel estimation on abelian Lie groups will be examined. Examples
illustrating the optimal estimation procedure are given at the end of

this section.

IV. 1. Signal Processes and Observation Processes

Consider the situation of a unit circle in R2 with a line tangent

to it.

We allow the line to perform a one-dimensional continuous transla-
tion (along itself); fix the center of the circle and require that there
be no slipping at the point of tangency. The line then induces a rota-
tion of t'e circle and if the line moves a distance x the circle rotates

x radians and so is x mod 21 = © radians away from its initial orientation.

A o I AV
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This method, called "rolling without slipping", will now be
used to construct a continuous signal process on S1 and to formulate
the mathematical model of a sensor (i.e., an observation process) to bc
used in this report.

We will adopt the following notation

(Q,4A,P) = a probability space

s = a positive real number

Ci = the family of real-valued continuous functionms,
a, on [0,8] such that a(0) = 0

B} = the Borel o-field of Cj

Cg = the family of 2 x 2 orthogonal-matrix-valued
continuous functions, A, on [0,s] such that A(0) is
the identity matrix I,

B; = the Borel o-field of Cga

01
3 =£1 0].

s
Lower case letters denote elements in Cl and upper case letters denote

elements in C;.

-]

2 be defined by

Let J:Ci +C

(14)

(J(a))(t) = exp(a(t)R) = cos a(t) sin a(t)
-gin a(t) cos a(t)

for a eci and te[0,s]. It is easily seen that J is B;-measurable and
bijective.. A point on the unit circle, Sl, can be represented by either
the angle 6e[-m,m) it makes with a fixed radial axis or the 2 x 2

s
orthogonal matrix exp(R8). Therefore, in the first representation, C2 is
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the family of piecewise continuous functions 6(t), such that at any
point of discontinuity the right hand limit of ¢ is + 7, while the
left-hand limit is + m.

Each continuous curve a(t) on R1 gives rise to one and only one

piecewise continuous curve 6(t) lying between 7 and -m, of which the
continuous segments are obtained by translating the corresponding

segments of a(t) by an integral multiple of 2m. Conversely,

s
each piecewise continuous curve in C2 gives rise to one and only one

continuous curve taking values on Rl which is obtained simply by
piecing the continuous segments together. This intuitive observation
illustrates the bijective property of the operator J. Thus, a continuous
random signal process on S1 which is described by an 4-measurable
function X:Qacz corresponds to a continuous random signal process on

Rl which is described by an A-measurable function x:Q»Ci such that

X(t) = (J(x))(t), tel0,s].
We now define a random process z:Q»Ci by the K. Ito random
differential equation,

1/

dz(t) = m(x(t),t) dt + q 2dw(t), z(0) = 0,

where m:R1 X R1+R1 is Borel-measurable, q:Rl-»R1 is positive and
measurable and w is the standard Brownian motion on (Q,4,P), inde-
pendent of x. Let Z:Q» Cg be defined by

Z(t) = (J(2))(t).
Applying the Ito differentiation rule, we obtain the following Ito

matrix differential equation:
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-q(t) m(t) 0 dw(t)
dz(t) = zZ(t) 2 dt + Z(t) (15)
-m(t) =-q(t) -dw(t) O
2
Z2(0) =1,
where m(t) 4 m(x(t),t) and the diagonal terms ale) are the second

2
order correction terms which keep Z on the circle. This equation is
the mathematical model of the sensor to be used. We note that the
input, x(t) to the sensor is not the dynamical state X(t) of the
rotational signal process on the circle, but rather the angle the
rotational process has swept.

The physical motivation for this sensor model comes from the fact
that in observing a rotational process (for instance a gyroscope
recording rotation about a fixed axis) our measurement contains infor-
mation on the total rotation, x(t), not just the orientation, X(t).

In some applications, such as the gyro problem mentioned above, we wish
to extract knowledge of orientation from knowledge of rotation, so it
is proper to regard X(t) as the signal process. However, in other
applications, such as FM demodulation, our interest centers on the x

process, and in these cases, we may regard x as the signal.

IV. 2, Conditional Probability Distributioms.

In this subsection, we will derive equations for the conditional
probability distribution of the signal process given observations over
some time period. The approach of this section is measure-theoretic
in nature, and the major results are summarized in the statements of

Lemma 2 and of Theorem 5 and its two corollaries.
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Let us denote {z(71),te[0,t]} and {Z(t), te[O,t]} by zt and

Zt, respectively. We note that zt - J(zt). Since J is bijective

from CI to C;, the o-subfield of A generated by z

that generated by Zt. In other words, the information carried by z

E is the same as

t

and z% is the same. That o-subfield will be denoted by A;. The

o-subfield of A which is generated by X. = X()\) (the subscripts ),s,t

A
denote that the processes are evaluated at these times) will be denoted
by 4. .

2 s

Let ?xz be the conditional probability measure on (Q,Ax) given

t | %
Az, defined by sz(A,mz) = P(AIAZ)(wz), for AeAx, Wy Qe Let sz be the

conditional probability measure on (Q,Az) given Ays defined by

t
P (Bw) = P(B|4) (w)), for Bed,, wyeQ. The restrictions of P to

1

t
Az and Ax are denoted by Pz and Px’ respectively. Let u, and W, be the

t

measures induced on (Ci,Bi) by z  and wt, respectively. Define the

conditional measures Hyy OO (CE,BI), given X_, by uzx(B,wl) =

A’

Pz (8) [4,) (@), for BeB] w,ca.

1
It is known [28] that My UM, where —~ denotes equivalence

of measures, and that
du

t t
zx (£7,A)) = E[0°|X =aA

d )‘]
2"

du
duw

t t
(6% = E 0%

Here Ex means taking the average over x. Further,

§eexp -1/2 ¢ n @& + F mGIE )
q

q

P TN S P O

e Vo B PPy L W

L
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where ¥ denotes an Ito integral. Hence

dp d i
= (y) ‘—d:zx (2" Cap)s Xy Cp)) < By Q87 K= X, ()
z 2z

t
E _(67)
where

of = exp (-1/2 § m’(v)dr + ¥,

(1) dz(T,wl)). (16)
q

L
q
We note that szx (wz,wl) is A, x Ax—measurable. Applying a general
dp
X
Bayes rule from [29], we obtain
dp

X2z (ml,wz) = szx (mz,ml).
dPx sz

Let us denote the family of 2 x 2 orthogonal matrices by MO and the set

of induced Borel sets by BO. Let B g be the conditional

) -1 t
measure on (MO,BO) given Az’ defined by vxz(A,wz) = P(XA (A)IAZ)(wz),

for AeBb,uzeQ. Let Vx be the measure on (MO,BO) induced by XX. Then

it is easily seen that

d dP
* Xz (ml,wz)

t =
e E_ (6 |xA Xx(“l))
X

dv
X t
Ex(e )

where et is defined by (16). Summarizing what has been shown, we

have the following lemma.

Lemma 2: Consider the observation process described by (15). The

conditional probability measure Vez? for the signal X, given the observation

A
t
Z  is then absolutely continuous with respect to Vi the a priori measure
for x)‘. Further, for Zt € C; and X tMo, one has
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. @, 2%) = Ex(et[XA-X) %
dv T
L E (87)
where
t t
of = exp (-1/2 pu’ (Ddr+ [ m(x) [2'(0d2(D],) n
09 09

with [2'(DdZ(0]}, = [1,0] 2'(Ddz(D[ 0 1.

If the density function of LY exists and is denoted by B (:),
~)
then it follows from Lemma 2 that the density function Px (-IZt) of
~\

vxz exists and can be expressed as follows:

t
E (87X, = X) p—’Sx x)

t
X|z") =
Px)‘( I Ex(et)

where 6% is defined by (17). Let x ¢ R1 be defined by exp Rx = X and

-n< x < . Then by simple calculations,
t t
pxx<xlz ) = B (07Ixy= x # 2k7, k=1, 2, ...) p_ (X)/ E_(8Y
~A

= Ex(etlx(k) = x + 2kn) p,g;(ﬂk")/l!x(et) , Q

k==w

where Py denotes the density function of x(A). This completes the
A

T

proof of the following theorem.

o — -
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Theorem 5: Consider the observation process described by (15). If

the density function Py of X()) exists, then the conditional density
~\

function Py (-IZt) exists and can be expressed as follows
NA

v
o«

p, |29 = 1 p_ Ger2kr|z®)
~X k=-w )

o E_(8%]|x(A) = xt2km)p (xc+2km)
5 X x)\

k== t
E_(67)

where et is defined by (17), B denotes the density function of x(1)
A

and x is determined by exp Rx = X and the condition -m<x<m.
It is appropriate to remark that one can easily derive the
stochastic partial differential equation for the conditional density

Py (xlzt) using Theorem 5 and the well-known equation ([31],[32]), for
=y :

Py (x+2kn|Zt), - < k < », For economy of space, this equation will
~A

not be displayed. However we remark that when m(x,t) is periodic in x
with period 2w, the equation is in a form similar to the Stratonovich-
Kushner equation with p replaced by p .
X A\
Using Theorem 5 and the well-known fact [30] that the smoothed

and the predicted densities can be expressed explicitly in terms of

filtering, we can easily obtain the following two corollaries.

Corollary 1: The conditional smooth density Py (XIZt), for t. < X < ¢,

—~,

0

may be expressed in terms of the conditional filtered density as follows:
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© t t 2
I 1 3 S8 N (x+2kn |2 exp U, %s__d1.-1/2 { % ds)
= k=-w ) q(s) q(s)

where x 1s determined by exp Rx = X, -T£x €T and

a1, = [2'(s)dz(s)] , - Rla )

® a(slxx = Xx) - ;(s)

a(s) = E(u(s) |2°)

B T e L T T T T Ty e g P e——,

;(slxx =x) = E(m(s)lzs, X = X).

A

Corollary 2: Let X be a Markov process with given transition density

Py (Xlx(t) = £). The conditional predicted density P, (XIZC), for
=) ~X

tO < t < A may be expressed in terms of the conditional filtered density

as follows:

40
Py x|z = 1 b R e)pxtmz‘)da.

3 IV, 3. Optimal Estimation.

In the previous subsection, the conditional probability distributions
were studied. A variety of estimation problems may be studied based on
those conditional distributions, but some estimation problems on
the circle can be solved directly by using results in vector-space
estimation theory. In this subsection, the well-established linear optimal
estimation theory will be used to deduce recursive equa:ioné for optimal

estimation on S1 and thereby illustrate the approach.




The estimation problem with which we will mainly be concerned in this

subsection is the following: Given a symmetric cost function $ defined
by (1), construct a 2 x 2 orthogonal random matrix i(klt) as a
Bt-measurable functional of Zt such that for all(:z-measurable 2%.2

1
orthogonal random matrices M one has the inequality

S e e

E(8(X(V), X(A|t)) |25 < ECe &), M) |25, (18)
in which ®(X ,X,) L $(8), 6 being determined by exp R@ = x{lx2 and

the condition -T< €< 11 (i.e., 8 is the angle between Xl and Xz).

We have seen, at the beginning of this section, that a continuous
random process X on Sl can be identified with a continuous random process
X on Rl via the bijective mapping X = J(x). We now construct a signal
process X on S1 by injecting a linear diffusion x into Sl, x satisfying

1/

dx(e) = a(t)x(e) at + b2 (t) av(r), x(0) = O

where b(t) > 0, ¥ teT, and v is a standard Brownian motion, independent

of the observational noise w. Applying the stochastic differentiation

rule, we obtain the following stochastic differential equation for our

signal process X = J(x):

dX(£) = = 1/2 b(D)X(t)dt + X(O)R{a() [ (exp F_ al)do)

1/2

b2/ 2(syav(e) 1de + b 3 (e)avie)) (19)

X(0) =1
t t
where we note that x(t) = J; (exp I a(r)dr)bl/z(s)dv(s).
0
The observation process to be used in this subsection is taken to

be Z, satisfying the stochastic differential equation:
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-q(t) c(t)x(t) 0 dw(t)
dz(t) = 2(t) 2 dt + Z(t)
-c(t)x(t) -q(t) -dw(t) 0

2
Z2(0) = I.

As shown in Subsection IV.1l, Z can be identified with z-J-l(Z) satis-
fying

%

dz(t) = c(t)x(t)dt + q 2(t)dw(t)

z(0) =0

Note that the equations for X and Z are each bilinear in form.
Moreover, z% and 2zt generate the same o-subfield Az in (Q,4,P). Hence

t—measurable functional £. of zt and a Bt-

L
E(x(A)IAz) is both a By ! ;

measurable functional f2 of Zt with

t -1,.t
fz(Z ) = fl(J z")). (21)
Let ;Alt and ;(Alt) denote fl(zt) = E(x(k)lzt) and fz(Zt) = E(x(k)lzt)
respectively.

We will first study the filtering problem, where ¢ = t. Then

the Kalman-Bucy linear filtering theory yields immediately

d;tlt — a(t);tltdt + K(t)c(t)q-l(t) (dz(t) - c(t); dt)

t|t

-~

xolo =0

where K 18 the solution of the Riccati equation
K(e) = 2a(0)K(t) - cZ(£)q 2 ()R2(t) + b(t)

K(0) = 0.




In view of (21), we obtain the following lemma, which not only leads
to the solution of the above stated filtering problem but also applies
directly to optimal frequency demodulatjon [6].

Lemma 3: Let the stochastic process (19) be the signal process and
the stochastic process (20) be the observation process. Then the
filtering equations are

d;(clc) = a(t);(tlt)dt,

* K(t)c(t)q-l(t) ([z' (£)dz(e)],, -c(t)x(t |t)dt)

§(0|0) 0

with K(£) = 2 a(0)K(t) - c2(t)q L(t)k3(t) + b(t)
K(0) = 0

and the conditional probability density is given by

t 2 2
P (xIZ Y w1 exp [- 1 (x—x(t]t)) ie
Xt /& K(t) 2K(t)
In view of Theorem 5, we see that Py (xlzt) is a folded normal
==t

density. By Theorem 2, it follows that P, (XIZt) is unimodal with
~t

mode at exp [x(t|t)R] and is symmetric about it. We may now conclude

from Theorem 1 that for a cost function defined by (1),
E(®(X(t), exp [x(t|t)RD)|2%) < ECox(t), M)|2%)
for any Az-measurable 2 x 2-dimensional orthogonal random matrix M.

Since expf{x(t|t)R] is easily seen to be a B;-measurable functional of
Zt, it follows that the optimal estimate of our signal process is
x(tlt) = exp [x(tlt)R].

Differentiating this with respect to t yields

ac i a e  bod o

o ool _albalabiecas b it g
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ax(e o) = 3 KOt (©)a (0K [DdeR e [ORae) - k)X (©)a7 )

t
TS (exp # @(0KDA(DGH(D)IADR()e(8)a T () 12" ()dZ(s)] , ]t
0 s

+ K(0)e()q T (0) [2' (1)dz()],,) -

Summarizing what has been shown, we obtain the following theorem.
Theorem 6: If the signal process X and the observation process Z on
Sl satisfy the following stochastic differential equations:

dx(t) = % b(t)X(t) dt

L

+ X(t)R(a(t) [:;(exp fj a(T)dT)bl/z(s)dv(s)dt]-+ bllz(t)dv(t))

X(0) =1
P t
dz(e) = 2(t) | -g(t) c(r) [ 4 X' (s)dX(s)
2 0 i
[ ¢
| =e(e) [ # X' (s)dX(s) 1, -q(t)
e 0 2
+Z(t)!' 0 dw (t)
-dw(t) 0 |
z(0) =1

where w and v are independent standard Brownian motions on Rl, then
the optimal estimate X(t]t) in the sense of (18) satisfies the following

stochastic differential equations:

df{(t[t) = --;' Kz(t)cz(c)q'l(t)i(tlt) dt +

A t t
X(t|£)R((a(t) - K(&)e2(t)q L(e)) [ £ (exp / (alr) -
0 s

KA (®)a7 (1)) - Kisde(s)a () [2'(s)dzls)] ) dt (22)

£ K(e(q (1) [2' (1) az(0),)
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K(t) = 2a(B)K(E) - e2(£)q Tee)R2(e) + b(t) (23)

K(0) 0

The conditional probability density is given by

o

b, (X|2%) = —E— 1 exp [_1_ (xt2kn -x(t[t)?]
Ze V2T K(t) k=-w 2K(t)
% o 2.2 2
=1+1 ¢ exp [-k'K'(t)] cos k(x—x(tlt))
27 m k=1 2

where x is defined by exp Rx = X and -7 < x < 7.
Some of the expected errors E(¢(X(t),X(t|t))) of the optimal

estimate X(tlt) can be obtained immediately from Theorem 4.

We note that the optimal filtering equations (22) and (23) are
complex in form. Conceptually, however, the filtering procedure is
quite simple: The observation process dZ first goes through a nonlinear
transformer. The transformed process [Z‘dZ]12 then goes through a
Kalman-Bucy linear filter. Then we inject the filtered process
%(t|t) into s! via the injection mapping J. The output X(t|t) of the

nonlinear injector is the desired estimate.

The same approach can be used to solve the smoothing and predic-
tion problems. The solution to the prediction problem is trivial and
hence omitted here. For the smoothing problem, we first recall [33]

that for 0 < A < t,

N t s
Ay S ok KO e e - R(0e (0™ (1))do)e(s)

a7 (8)(d2(s) - e(e)R, ) do).
By (21), it follows that




4=

~ A t s
x(A]e) = x(A[D) + K # (exp f (a(1) - K(Del (g 1(0))de
A A

ce(e)g M) ([2'()dz(8) ], - c()X(s|s)ds). (24
We note that the conditional probability distribution of x())
given z° is Gaussian. From Theorem 5, it follows that P, (X[Zt) is a

=3
folded-Gaussian density and hence unimodal. As in the filtering case,

X(A[t) = exp (x(A[E)R). (25)
Substituting (24) into (25) thus yields

-~ S

X(a|t) = X(A]A) exp {RK()) { (exp [ (a(r) - K(T)C (t)q (T)dT)

A
c(s)q H(s) ([2' (S)dZ(S)] - c(s) f[X (rIr)dX(rlr)] ,4s)}

where we have used the identity ;(s|s) = f [ﬁ'(rlr)dX(rlT)llz
0

Summarizing what has been shown, we obtain the following theorem.
Theorem 7: If the signal process and the observation process are
the same as in Theorem 5, then the optimal estimate, X(A|t),

0 <X <t, in the sense of (52), is given by

~ a t s
X(Aft) = X)) exp {RK(\) # (exp S (a(1) - K(r)cz(r)q-l(r))dt)
A A

s ~ ~
c(8)a71(8) ([2'()d2(s)], = e(s) [ (X' (x| 1)dR(x| 1)) ,d9)),
0

where i(rlt), K(t) can be obtained from (22) and (23).

The conditional probability density of X()) given Zt, the expected
errors E(O(X(A),i(klt)), the stochastic equations for %(A]t) for fixed-
point smoothing, fixed-lag smoothing, and fixed interval smoothing can
all be easily obtained by straightforward computations which are left

to the interested reader.
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IV. 4, Random Initial State.

In the previous subsections, the initial state of the signal
process X has been assumed to be X(0) = I, the identity matrix. This is
obviously not a practical assumption in some applications. In this
subsection we will consider the case in which the initial state is
a random variable. We will denote the signal process by Y in this sub-
section, and assume that Y(0) = Yo is a random variable independent of
the observational noise w.

We observe that the input to the observation process (15) at
time it is not the dynamical state of the signal. It is the angle that
the rotational process represented by the signal has swept over the
time interval [0,t]. Taking this viewpoint, our present problem can be
solved through the previous ideas with some modification.

Let y(t) denote the angle through which the signal Y has swept during
[0,t]). It is easily seen that

t
y(©) = [ ¥ ()axe)),

Define a rotational process X by

X(t) = Y;lY(t)
Then X(0) = I and, as before, we may define
t
x(6) = @HE)(®) = [ 7 X' ()ax(s)],,.
0

Note that x(t) = y(t). In other words, the angles swept by X and
by Y over [0O,t] are the same. Hence (15) can also be used as the
observation process for our present problem. The conditional distribution
of X(\), given observation z* of the form given in (15), can be determined

by application of the previous results.

©

e s 4
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We note that YO and X()) are conditionally independent given

Zt. If the distribution of YO and the conditional distribution of

X(A) given zt are both folded normal, then the following lemma easily
leads to the conclusion that Y(A\t), the optimal estimate of Y(\) given
Zt,is equal to Qoi(xlt). Here QO is the mode of the distribution of YO
and i(klt) is the mode of the conditional distribution of X()) given

.

Lemma &4: Let A and B be two independent random 2 x 2 orthogonal matrices

~

each of which has a folded normal distribution with modes X and B
respectively. Then AB is a random 2 x 2 orthogonal matrix which has

a folded normal distribution with mode Xg.

Proof. It is easily seen that there exist unique real-valued normal
random variables a and b such that Ea, Eb are in [-m,m) with A= exp Ra, and
B = exp Rb. Then AB = exp R(a+b). Obviously a+b is a normal random
variable. Hence AB is folded normal and the mode of AB is exp[RE(a+b)] =

exp [RE(a)]- exp [RE(b)] = &ﬁ.

IV. 5. Multichannel Estimation.

The results of the previous subsections can be extended to the large
class of problems involving processes evolving on abelian Lie groups.
It is well known [347 that a given connected abelian Lie group G is
isomorphic to the direct product of a number of copies of the circle
and a number of copies of the real line, i.e.

¢c=~Rr" x (s1)"
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where (Sl)m is usually called a "torus." The diffusion processes on
this type of space have been used to model some interesting satellite
and pendulum systems in [54]. Analogous to (14), a bijective mapping

s, n+m s\n
. —_—
Jnm.(Cl) (Cl) x (C

5)" is defined by
(Jnm(a))(t) = [al(t),...,an(t), (J(an+l))(t),...,(J(an+m))(t)]

for a ¢ (Ci)n+m, a; being the ith component of a. Thus a continuous

random signal process on G which is described by an A-measurable
function X:Q - (Ci)n X (C;)m corresponds to a unique continuous random
signal process on Rn+m which is described by an A-measurable function

x:Q *(Ci)m+‘ such that

x(t) . (Jnm(x))(t)y tCIO)S]o

The mathematical model for the sensor can be obtained by first
using Jnm to inject the following vector random differential equation
into R%x(sH)™

dz(t) = m(x(t),t)dt + dv(t) (26)

z(0) =0

and then differentiating Z(t) = (Jnm(z))(t) by the stochastic differ-
entiation rule to obtain a set of stochastic differential equations, The
first n of these equations are the same as the first n equations of (26)
and the last m equations are bilinear 2 x 2 matrix differential equations
having the form (15). This calculation is straightforward and so we will
not display the resulting equations. Because of the bijective property of
Jnm’ it is clear that the estimation analysis in the previous subsections

can be easily generalized to this general abelian case with little modifi-

cation., For the special case in which x is a linear diffusion and
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m(x(t),t) is a linear function of x(t), what has been shown is that the

applicahility of the celebrated Kalman-Bucy filter includes estimation

on abelian Lie groups.

V. DISCRETE-TIME ESTIMATION ON COMPACT LIE GROUPS

The results of Section III can easily be generalized to problems
on compact non-abelian Lie groups by introducing a similar exponential
Fourier density (EFD) on the group. This density is obtained by using
a sequence of irreducible unitary representations which form a complete
orthogonal system on the compact group. It can be shown that a conti-
nuous density function on the group can be approximated as closely as
we wish in the space of square integrable functions by such an EFD.

As with the circle case a consequence of the group structure is that
the class of EFD's of a certain finite order on the compact Lie group is
closed under the operation of taking conditional distributions. It will
become clear in the sequel that it is exactly this closure property of
the EFD's that yields simple estimation schemes in which the sequential
conditional densities are updated by recursively revising a fixed finite
number of parameters.

In order to illustrate how the conditional density can be used to
calculate the optimal estimate on the group, a rigid body attitude vsti-
mation problem is solved as an example. The error criterion, the optimal
estimate, and the estimation error with respect to the criterion will

be discussed for a given probability distribution.
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V. I. Compact Lie Groups and Their Matrix Representations.

We begin by summarizing some definitions and preliminary results

to be used in this section. The reader is referred to [353-737] for

B I e e

details.

Definition. A differential manifold M of dimension n is a Hausdorff
topological space with the following properties: (a) For every element
meM there are an open set U containing it and a homeomorphism y:U*VCIRn,
called a chart. The set V is called a parameter domain. The components
of vector y(m) are called the coordinates of m, (b) For any two charts,

Yy and Yo» defined on U, and UZ’ the composition y2°y11 defined on

1
yl(Ulf\Uz) is smooth (i.e., infinitely differentiable).

Definition. A Lie group G is both a differential manifold and a group,
which is closed and connected, such that the group operations are smooth
in coordinates, If the group is covered by finite number of bounded para-

meters domains ‘through their charts, then the group is said to be compact.

Definition. - An m x m matrix representation of a Lie group G is a sub-
group ' of the nonsingular m X m matrices together with a homomorphic

smooth mapping D of G onto I'. That is, for each a, beG, there is an

element D(a) el such that (a) D(a)D(b) D(ab), (b) D(e) = I, and

(¢c) D(a-1)=[D(a)]_1. We write dim D = m. The representation is said to
be unitary if each matrix in T is unitary. Two such representations
D1 and D2 are called equivalent if there is a nonsingular m x m matrix ¥

such that le(a) = Dz(a)¢ for each aeG, A reducible representation

is one that is equivalent to the block form,




L

D(a) = ~ pla) c(a) ]

0 Dz (a) ’

1 2 . ;
where D” and D can be shown to constitute representations. If a repre-
sentation is equivalent to such a block form with C = 0, it is
called completely reducible. It can be shown that a reducible unitary

representation must be completely reducible.

Definition., We delete from some of the parameter domains their inter-
section with others so that the points of the resulting domains are in
1-1 correspondence with the group elements. Then the integral
Jf(x)w(x)dx of the function f with respect to the weight function w is
well defined. It can be shown that a weight function w, unique

except for a normalizing factor, can be found such that this integral

is left invariant, e.e., ff(p)w(p)dp = ff(ap)w(p)dp for any continuous
function f and any group element a. On a compact Lie group the integral

is also right invariant and is written as ff(g)dg.

Theorem 8. Let Dl(a), Dz(a),..., be 2 family of inequivalent irreducible

unitary representations of a compact Lie group. The matrix elements Dk

ij

of these -epresentations satisfy the orthogonality relations

k

/)
(82?48 = (fdgidim. (D) )8y ¢

J’Ifim(g) D

ijdmn
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Theorem 9. (Peter-Weyl) A continuous function on a compact Lie

group can be uniformly approximated by a linear combination of the

; k . : ; ;
matrix elements Dij of the unitary irreducible representations of

the group.

V. 2. Exponential Fourier Densities on a Compact Lie Group.

Let us denote by Dl, DZ, «ees a collection of irreducible,

inequivalent, and unitary matrix representations of a compact Lie
group G, which are of dimensions ny, Mogeeens respectively. We
define an exponential Fourier density of order N, to be denoted by

EFD(N), on G as a probability density of the form

N n
p(a) =exp £ 1 & ot (a) &
(=0 t,je1 A
N n
exp ( I Zf' aLD,'e,(a)+a°)
L1 i,j=1 ij ij 00

where ago is a normalizing constant and all other coefficients a}

ij
are arbitrary complex numbers. The double summation notation above

will be abbreviated by L. The norm of a function f in L2(G) will be

2
Qﬂf|(g)dg)1/2.

>

denoted by ]Ifll

Theorem 10. Let p be a probability density on a compact Lie group G.
Assume that p is continuous. Then for any given positive number ¢,

2
there exists an EFD, Py = exp L aijbig’ such that ||p-pq|| < g4
) =

Proof : Assume that
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inf{p(x) : xeG} =c¢ > 0. (27)
This assumption will be removed later. We note that f(x) = gn p(x)
is then well defined and also continuous on G.
Since G is compact, in view of the Peter-Weyl Theorem,
for any 0 < § <1 there is a linear combination of Din, say
f = L ain(d)nin, such that ||f6—f||w < §. It follows that

§
P h, < 1% Jlekl . = %

Define a function g:Rl > Rl by

) = f-exp X, x<M
il ~  g(x) = exp min {x,M}
exp M, x>M

and an operator g on the set of real functions on G by (gu) (x) = gu(x)).
It is obvious that g satisfies the Caretheodory conditions [38,p.20] and
g transforms every function iﬁ L2(G) into a function in LZ(G).

By Theorem 2.1 of [38,p.22], the operator g is continuous. Hence
given any €>0, there exists a § >0 such that if lif5“f|| < §, then

|l§f5-§f|| CEy Then Hexp fé—p“ = !Ef5-§fl| < e.

Now let us remove the assumption (27) and assume that
inf{p(x):xeG}=0. Let ¢ be an arbitrary positive number. Set Clé52=5/2
and p, (x) 4 p(x) + €,/V, whereV is the volume of G. The function p,

satisfies (27). Hence there is an EFD(N), exp f , such that ||exp f -

p1[| < € . By the Minkowski inequality,

[lexp £ -p|| < [lexp £ -p || + [|p;-P|| < &) + €, = €. (28)
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So far we have shown that for any e>0, there is an EFD(N),
exp f, such that llexp f—pll < e. We note that exp f is not
necessarily a probability density function. In the following it
will be shown that the exponential Fourier density obtained by
dividing exp f by fexpf(g)dg can be used to approximate p as closely
as desired.

Doy > ey =
Let P, = exp f and p = p1/fpl(g)dg. Then
VI o 3 & 172
[Ipypll = /(1) - p () del (29)
J py(g)dg

|1/5p, () dg-1] (5 (e)dp) "/

| A

Il/fal(g)dg—l|v V exp M.

By the Holder inequality,

|1-7p, (&)dg| = |/ (p(8)-py (8))dg]

<I/p(8)-p, (8)|dg

< Upe)-py @) %) 2

<YV E,

Hence, fpl(g)dg 3_1—f7 € . Substituting these two inequalities into
(29), we have ]|pl—p|| < (Ve/(1-/Ve)) exp M. By the Minkowski inequality,

(28), and (29),

[lp=pll < le=pyl| + || py=pil < Ve _ exp M+ ¢ =:c.
1-HNe

We observe that e can be made arbitrarily small by setting e sufficiently

small. This observation completes the proof of the theorem.

i
|




V. 3. Estimation for Processes with Noise on the Lie Group.

Suppose that the signal process sk

both evolve on a compact Lie group G and are related by

e = N o S (30)

where Vi is a noise process, also evolving on G and o denotes the

group operation. Our reason for writing v to the left of s is to be

orthogonal matrix representation; the matrix S representing s is
premultiplied by the matrix V representing v to obtain M = VS,

We now consider a signal process s, which is governed by the

k

equation

s =W o''s

k+1 k k (31)

where W is a sequence of known elements on G. If S, is a random
variable taking values on G, an interesting estimation problem is to
find an effective way to recursively compute the conditional density
of Sk given the set of measurements, mk 4 {ml,...,mé s k=L 2 sisiete

The EFD's introduced previously are ideal to use in solving

this problem on many compact Lie groups such as the three dimensional

rotation group, SO(3). However, for a reason to be discussed later,

L

13 of the

it is more convenient to include the complex conjugates D

harmonic functions Dz in the EFD(N). Thus an EFD(N) in this subsection

ij
will be a density function in the form
f) ;
= n’t L p#
p(a) exp X (aij 1_j(a) + bijDij(a))'

and the measurement process m

consistent with the corresponding matrix equation obtained by the use of the
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Suppose Sy and Vi have EFD(N)'s (if they have different
orders, we can let N be the maximum order and, by inserting zero
coefficients, make all densities of order N) which are described,

respectively, by

= 20 £ £ ge=

p(s,) = exp I(a "D (s))+ P D " (s;)) (32)
£ ~ 2k £ ~ M A%

p(vk) e 2:(amn Dmn(vk) : bmn Dmn (vk)) (33)

We claim that if the conditional probability densities,

p(sklmk), k=1,2,..., are all EFD(N)'s, then we need only keep
N

track of a fixed finite number, I n, , of parameters for
‘:1

updating the conditional densities. The proof is by mathematical

induction.
For k=0, p(sklmk) is obviously an EFD(N), as p(solmo) =

k=

p(so). Let us assume that the conditional density p(s m ) is an

k1!
EFD(N), denoted by
k-1 k-1 p 8y, 2hkelpte

p(sk-llm P exp Z(amn mn ok-1 mn mn Sk-1

)) (34)

We will now show that p(sklmk) is also an EFD(N) and at the same
time exhibit a recursive formula for the Fourier coeffieicients

andazzK
mn

12k
a
mn
From (30), (31) and the group property of G, Vi and Sk-1

can be expressed as

.
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- -1 ]
vk mk° sk and sk-l wk-l ° sk

Thus, using (34), p(sk,mk_l) is an EFD(N):

1£,k-1 £ 24,k=-1 g -1
p(sllm ) = exp A St N k g8 ) hal VI A ]

nf £ Y
= exp Z[alt bl LI D .( %
i=1

) plt . -1 L*
PR 12y D O ) Dy (s )]

mn

n
- exPz{[j’zl sidbalontl siiobiue o

24 k-1 L* 1 L%
[j=1 Ay LS (11 D (s, )} (35)

The second equality holds because D is a matrix group repre-
£ £ £
sentation so D (g1°82) =D (gl)D (gz).

The following calculation shows that p(mklsk) is also an EFD(N):

1£k £ = Lk L% &
p(mk|sk) = exp Zib mn(mk ° skl) + binkvmn (m, o sk]ﬂ
n l 1
= exp {[ & b; % :m( )] D ( kl) +
j=1
"2 e L L%
24k % 1
[jil b Dy ®1 D (s}
)
= exp 30 1 612% DPm )] DAY s ) +
jer a0 Pin
"4 2k t
[ b (m )]D (s )] (36)
jug d0 gm

o ———————
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The last equality nholds because D 1is a unitary matrix repre-
sentation so Dl(g-l) = [Dz?g)]*

We note that the complex conjugates D%; are included in the
EFD(N)'s in this subsection just to ensure that the above expression
be an EFD{(N). On many compact Lie groups, the complex conjugates

*
D;n are unnecessary. For instance, on the three dimensional rotation

m+n l

_n,-m(g)’ m’n=-£’-£+l,°°'9 l) where

group we have D (g ) = (-1)
the complex conjugates are avoided.

Substituting (35) and (36) into the Bayes Rule, we obtain
k7 k=1 :
ps [m) = ¢, ps [m ) plm [s)

) . .
Al gl 0 g Wt g s B e

2 l
S8 24 1 [a jm" k-1 Ju Djn k mn k

k g=1
o {ﬁf“’l ’j‘m CRR RS al TACH) Ll W
3=1

which is an EFD(N). This completes the proof of the following:

Theorem 1ll. Let the signal and the measurement processes, sk and mk,

on a compact Lie group G be governed by

Here Wi is a sequence of known elements on C and Vk’ the measurement
noise process, is a sequence of independent random variables taking
values on G. Suppose the probability densities of s, and Vv, are
EFD(N)'s described by (32) and (33). Then for k=1, 2, ..., the

conditional density p(sk|mk) is an EFD(N) of the form
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| S 12k £ Uk L*
p(sk|m ) = exp Z(amu Dmn(sk) + a Dmn (sk))

4 £
The coefficients aink and aink are determined recursively

by the formulas

Lk . Zp - abica bow 20k A%

g .f [ajn Djm(wk—l) + bjm Djn & 3
j=1 k

O .y SN TR 14k 4

%mn T ;:sl[ajn o Tpag b By Py P2

ok .
and L is a normalizing constant,

V. 4. Estimation for Processes with Additive Noise.

In this subsection we will consider another model for which the
estimation problem can be solved using EFD(N)'s. Suppose that the

signal process s, evolves on a compact Lie group G according to the

k

equation (31) and it is observed with additive noise v

K through the

p-dimensional vector-valued measurement process m s

m = h(sk) + vy

Here h is a given square-integrable, p-dimensional vector-valued function

on G, and Vi is a sequence of p-dimensional independent Gaussian

vectors, each having zero mean and with covariance matrices E(vkv;)=Rk.
The completeness property of the functions {D;n} assures us

that, for any €>0 and for each component hj of the function h, there

exists an integer Mj and coefficients héi such that

S ——————————
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X M. o 2i y)
07 TR S N vl - 8 | I N T PR
8 mn mn 2
£=1 m,n=1

Let M = max M, and denote by hM(S) the p-dimensional vector whose
3
Mon £j AM ngy L.
jth component is £ & h Dmn(s) = 3 B hmJ D (S),
4=1 m,n=1 ™ £=1 m,n=1

.

with hij £0for 4> Mj' For abbreviation, we will denote the
double summation notation by Z.

Since the function h is a mathematical description which is necessarily
an approximation of the physical phenomenon that it describes, we may as

well use the equation m = hM(sk) * ¥, .to represent the observation

of the signal S

Each noise vector has density

2% 0 P ek g
p(vk) = (27) p/z(det Rk) 1/2 exp [- %— T RV v ; i]
i,j=1 k
where Rk has components R;J and vk has components v; . By substituting
- hM(sk) for v, ve obtain
- 1
p(m, [s,) = (2n) P/2 (et R,) 2
iJ 21 L Lj
o ‘ 2-1 ? 1 1 r hmn mn k)] 2 ﬁn o hmn mn(sk)j‘
B -p/2 -1/2 L 4
= (27) (det Rk) exp {C + I Cmn mn( k)
M nt nl' u' 2 g
+ I £ z C (m,n,m',n')Dmn(sk)Dm.n.(sk)}

£,4'=1 m,n=1 m',ntl




w8 7

Here,
P ;
o i & [ T
C0 1/2 -Z Rk m o m
j=1
¢ w12 ¢ &S (el n8 4 gt ntl
mn 5% k k mn k mn
k,j=1
u' g iR B A i
(o (m,n,m'n') = -1/2 Z Rk hmn hm'n"

i,j=1

A
i L (s £
We note that if the product function, Dmn(ak) Dm'n' (sk),

can be expressed as a linear combination of finitely many harmonic
functions, Din(sk), on G, then p(mklsk) is an EFD of finite dimensfon.
Fortunately, this is indeed the case. The product function Dén%fﬁﬂ is a
component of the direct produce., Dl X D!‘, of D and D ‘, which is

itself a representation of G [35,p.79]. As every finite dimensional
representation of a compact Lie group is equivalent to the direct sum

of a finite number of irreducible unitary representations [36, p.333],

v
the component DZ Dz , of the finite dimensional representation
P mn m'n

'
D% x ¥ is indeed a linear combination of finitely many q:l's, which

we write
' M n,
B pb o g gt e i
Cat 7 i k
mn mn fl j,k'—'l l'm'n'( 9.19 ) Djk,
The A\'s are constants and M is the maximum superscript of all the irreducible
unitary representations which appear in the above mentioned direct sun.

It was shown in (35) that if p(sk_llmk-l) is an EFD(Nk_l),

then p(sk[mk_l) is also an EFD(N, .). Therefore if p(sk_llmk_l) is

k-1

an EFD(Nk_l), the conditional density p(sklmk), which is equal to
k-1

¢ (s, [m " p(m] s), is an EFD(max{N, _, M}). Thus if p(s,) is

an EFD(N) given by (31), then p(sklmk) will also be an EFD(max {M,N})
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for all k = 1,2,.... The recursive formulas for updating the coefficients

ais can be easily obtained by straightforward but tedious calculations which

are omitted here.

- £
As remarked above, the determination of Xz::'n

'
on the decomposition of the direct product DL X DE of irreducible repre-

, (i.3.k) depends

'
sentations Dz and Dz . Such a decomposition is not always easy but,
fortunately, such decompositions have been thoroughly studied and documented
for many special groups including SO0(3). The interested reader is referred

to [40, p. 807 and [39, p. 155)] for further discussions and references.

V. 5. An Example - Orientation Estimation of a Rigid Body Rotation.

The state space of a rigid body rotation is the three dimensional rota-
tion group denoted by SO(3). A common way to parametrize this group is to
use the triple of Euler Angles (&,Q,W), 0< +< 2, 0<6<mM,0<y < 2m.
Thus, each element of SO(3) is expressed uniquely as the result of a sequence
of rotations through these angles about the 2z - x - and z - axes.

We will use a sequence of finite dimensional unitary representations
{D‘(é,e,w), £=0,1,...} attributed to E. P. Wigner. The components are

described in [35. p 1447 by :

e
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) L :
0 (d,0,9) = 1" o7imd at (gein?

with

Lin
1/2 d L4m

(cosp -1) (1 + cose)'z“m

d? (8) = sin™ ™8 (1+cose)™ {£-n)!
mn ] 7
d(cos®H) i |

24 (b4m) 1 (fmy1)L/2 - )

where m and n are integers such that -£ <m, n < . The functions {

Déﬁ form a complete orthogonal system in the space of square integrable

functions on SO(3) with respect to the inner product

<fl. f2>= ffl(g)fz(g)dg

2m ﬂ
= _};. 7

3 fl(¢,6,w) f2(¢,6,w) sin 6 d¢dedy.
8 0

oSN

m
J
0

An EFD(N) is a probability density on SO(3) of the form

p(¢,8,¥) = exp g é alZ Dl (¢,0,¥)
sV 20 m,n._.._g mn mn s Yy

where ago is a normalizing constant. By Theoreml0O, any continuous
probability density function can be approximated as closely as desired
by such an EFD(N) in the aforementioned inner product space.

Let us now consider the following estimation problem: The signal

process s, is a sequence of random rotations on SO(3) which satisfies

k

b o I TR

rotations W The measurement mk is a concatenation of the signal Sy

and the rotational white noise Vi i.e. M™% P By Suppose it is known

o denoting product rotation, for some sequence of known

have EFD(N)'s which are described by

that so and v

k




R TR

60
N
£20
p(so) = exp I ¥ a D‘e (sg)
£-0 m,n=-g ™ DO
N
£ ¥}
p(vk) = exp I r b X pt (v, ).

£=0 m,n=-l omn  mn

We would like to find the optimal estimate of s, on SO(3) given the

k

k " A .
measurements m = {ml, ooy mk} with respect to an error criterion

which provides a measure of the deviation of the estimated orientation

of the signal rotation s, from the orientation of the signal rotation

k
itself.

Following the calculation in the subsection V.3, we can show

that the conditional density p(sklmk) is an EFD(N) of the form
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where the coefficients amﬁ are determined recursively by the

formulas
Lk Lk~t. 4 . =~} m+n Lk g
L e OO Sl nbj’_ij’_n(mk)}, (32)
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and am is a normalizing constant. These formulas enable us to

calculate the sequential conditional densities by updating recursively
a finite and fixed number of parameters.

In order to define an error criterion for orientation estimation,
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